Наверх

Лекция 6. Многогранники

По вопросам репетиторства по начертательной геометрии, вы можете связаться любым удобным способом в разделе Контакты. Стоимость и возможные формы обучения (очно или дистанционно) смотрите разделе Цены.
Подробнее о репетиторстве.

6.1. Пирамида. Сечение пирамиды плоскостью. Развертка пирамиды

Многогранником называется тело, ограниченное плоскими многоугольниками, которые называется гранями.

Грани, пересекаясь, образуют ребра.

Ребра, пересекаясь, образуют вершины.

Рассмотрим два основных вида многогранников:

Пирамида – многогранник, у которого боковыми гранями являются треугольники, а основанием – многоугольник.

Упражнение

Дана пирамида, основание которой  параллельно π1. Основание представляет собой некоторый треугольник.

S – вершина пирамиды (Рисунок 6.1).

ris6_3

Рисунок 6.1 – Пересечение поверхности пирамиды прямой

Требуется построить точки пересечения прямой m общего положения с поверхностью пирамиды.

Решение

  1. Вводим через прямую вспомогательную секущую плоскость σ∈m и σ⊥π2.
  2. Строим сечение ∆ (123) поверхности пирамиды с плоскостью σ.

Решение задачи сводится к нахождению линии пересечения плоскостей общего положения (боковые грани пирамиды) и плоскости частного положения (плоскость σ).

Примечание. При наличии круто падающих рёбер (близких к вертикали), построение недостающей проекции точки на ребре по одной данной проекции  необходимо выполнять при помощи пропорционального деления отрезка.

  1. В сечении находим точки M и N принадлежащие прямой m.
  2. Определяем видимость прямой m.

Развёрткой многогранника называется фигура, полученная в результате последовательного совмещения граней многогранника с плоскостью.

Развёртка всегда строится наружной (лицевой) стороной к наблюдателю.

Для построения развёртки пирамиды нужно определить истинные величины всех рёбер пирамиды и построить грани пирамиды в виде треугольников, последовательно присоединяя их друг к другу.

Основание можно присоединить к любой грани, например, АС (Рисунок 6.2).

ris6_4

Рисунок 6.2 – Построение развёртки пирамиды

В упражнении истинные значения ребер определены способом вращения. Для построения линии сечения на развертке, на истинных величинах рёбер построим точки \overline{1},\overline{2},\overline{3}, проведя горизонтальные линии (траектории перемещения точек 1, 2, 3) до пересечения с соответствующими истинными проекциями ребер.

6.2. Призма. Развертка призмы

Призма – многогранник, у которого боковыми гранями являются параллелограммы, а основания – многоугольники, лежащие в параллельных плоскостях.

Упражнение

Дана призма, основания которой параллельны плоскости проекций π1.

Требуется построить точки пересечения прямой m с поверхностью призмы (Рисунок 6.3).

ris6_5

Рисунок 6.3 – Построение «точек встречи» прямой с поверхностью наклонной призмы

Порядок построения:

  1. Вводим через прямую вспомогательную секущую плоскость σ∈m и σ⊥π2.
  2. Строим сечение поверхности призмы с плоскостью σ →(∆(123)).
  3. В сечении находим точки K и L принадлежащие прямой m.
  4. Определяем видимость прямой m. Если грань АВ на π2 видна, то точка К на π2 видима, грань ВС невидима, следовательно, точка L невидима.

Рассмотрим наклонную призму. Пусть основание призмы параллельно π1, а ребра параллельны π2.

Построим нормальное сечение, то есть сечение плоскостью σ, перпендикулярной ребрам призмы (Рисунок 6.4).

Это сечение развернется в прямую линию. Боковые ребра перпендикулярны к линии сечения.

ris6_6

Рисунок 6.4 – Построение развёртки призмы

Порядок построения:

  1. Найдем истинную величину сечения – (102030), для чего повернём сечение (123) вокруг оси n⊥π2, (можно ввести ДПП π3//σ).
  2. Проведём горизонтальную линию на свободном месте листа. Отложим на ней отрезки:
    /10-20/; /20-30/; /30-10/.
  1. Проведём направления рёбер перпендикулярно этой линии через точки: 10; 20; 30 и отмерим вверх и вниз расстояния от нормального сечения (на π2) до верхнего и нижнего основания, откладывая их на линиях-ребрах.

6.3. Взаимное пересечение многогранников

В результате пересечения многогранников получим ломаную линию.

Возможны два случая пересечения многогранников (Рисунок 6.5):

ris6_8

Рисунок 6.5 – Варианты пересечения многогранников

Вершины ломаной – точки пересечения рёбер одного многогранника с гранями другого.

Звенья ломаной – линии пересечения граней.

Для решения задачи нужно найти вершины ломаной, то есть точки пересечения всех рёбер, участвующих в пересечении.

Построенные точки соединить.

Упражнение

Построить линии пересечения призмы с пирамидой (Рисунок 6.6).

ris6_9

Рисунок 6.6. Построение линии пересечения призмы с пирамидой

Решение

  1. Находим на π2 проекции точек пересечения ребра пирамиды с проецирующими гранями призмы (точки 12 и 22). Находим их горизонтальные проекции.
  2. Строим точки пересечения ребра призмы с боковыми гранями пирамиды (точки 32 и 42), для чего используем вспомогательную плоскость τ⊥π2.
  3. Полученные на π1 точки 3, 2, 4, 1 соединяем отрезками прямых. Причем отрезки 11-31, 11-21, 11-41 невидимы. Получили замкнутую линию пересечения пирамиды с призмой.

Упражнение

Построить три проекции пирамиды с вырезом и развертку (Рисунок 6.7).

  1. По двум проекциям построить третью;
  2. На всех трех проекциях построить проекции линии пересечения призматического выреза с пирамидой;
  3. Невидимые участки линии пересечения и участки рёбер многогранников показывать штриховой линией;
  4. Построить развёртку пирамиды с нанесением линии пересечения.

ris6_7

Рисунок 6.7. Построение проекций пирамиды с вырезом и развертки

Решение:

  1. Проводим линии рёбер призмы на всех проекциях.
  2. Введём плоскость σ⊥π2, σ//π1:
  • σ//АВС – основанию пирамиды;
  • σ пересекает пирамиду ’ сечение подобно ΔА1В1С1.

Это сечение пересекается:

— с ребром D в двух точках 1 и 4;

— с ребром Е в двух точках 2 и 5.

Грань D2E2S2B2 =62.

Ребро F2S2B2 =72.

Соединим найденные точки: 1-2-3-1; 4-6-5-7-4 и определим видимость.

Построение развертки рассмотрено ранее.

6.4. Задачи для самостоятельной работы

1-4. Построить линию пересечения гранных поверхностей. Показать видимость (Рисунки 6.8 – 6.11).

ris6_10

Рисунок 6.8

ris6_11

Рисунок 6.9

ris6_12

Рисунок 6.10

ris6_13

Рисунок 6.11

По вопросам репетиторства по начертательной геометрии, вы можете связаться любым удобным способом в разделе Контакты. Стоимость и возможные формы обучения (очно или дистанционно) смотрите разделе Цены.
Подробнее о репетиторстве.

Поделиться с друзьями